Knowledge Extraction from Survey Data Using Neural Networks
نویسندگان
چکیده
Surveys are an important tool for researchers. Survey attributes are typically discrete data measured on a Likert scale. Collected responses from the survey contain an enormous amount of data. It is increasingly important to develop powerful means for clustering such data and knowledge extraction that could help in decision-making. The process of clustering becomes complex if the number of survey attributes is large. Another major issue in Likert-Scale data is the uniqueness of tuples. A large number of unique tuples may result in a large number of patterns and that may increase the complexity of the knowledge extraction process. Also, the outcome from the knowledge extraction process may not be satisfactory. The main focus of this research is to propose a method to solve the clustering problem of Likert-scale survey data and to propose an efficient knowledge extraction methodology that can work even if the number of unique patterns is large. The proposed method uses an unsupervised neural network for clustering, and an extended version of the conjunctive rule extraction algorithm has been vii proposed to extract knowledge in the form of rules. In order to verify the effectiveness of the proposed method, it is applied to two sets of Likert scale survey data, and results show that the proposed method produces rule sets that are comprehensive and concise without affecting the accuracy of the classifier.
منابع مشابه
Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملKnowledge Extraction from Web Documents Using Self- Organizing Neural Networks
Knowledge discovery is defined as non-trivial extraction of implicit, previously unknown and potentially useful information from given data [1]. Knowledge extraction from web documents deals with unstructured, free-format documents whosenumberisenormousandrapidlygrowing.
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013